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a b s t r a c t

Seven pairs of epimers and one pair of isomeric metabolites of taxanes, each pair of which have similar
structures but different retention behaviors, together with additional 13 taxanes with different substi-
tutions were chosen to investigate the quantitative structure-retention relationship (QSRR) of taxanes
in ultra fast liquid chromatography (UFLC). Monte Carlo variable selection (MCVS) method was adopted
to choose descriptors. The selected four descriptors were used to build QSRR model with multi-linear
regression (MLR) and artificial neural network (ANN) modeling techniques. Both linear and nonlinear
models show good predictive ability, of which ANN model was better with the determination coeffi-

2

axanes
somers identification
ltra fast liquid chromatography
onte Carlo variable selection

rtificial neural network

cient R for training, validation and test set being 0.9892, 0.9747 and 0.9840, respectively. The results of
100 times’ leave-12-out cross validation showed the robustness of this model. All the isomers can be cor-
rectly differentiated by this model. According to the selected descriptors, the three dimensional structural
information was critical for recognition of epimers. Hydrophobic interaction was the uppermost factor
for retention in UFLC. Molecules’ polarizability and polarity properties were also closely correlated with
retention behaviors. This QSRR model will be useful for separation and identification of taxanes including

from
epimers and metabolites

. Introduction

Taxanes, a class of biological compounds derived from yew trees,
ave been the target of intense investigations during the past 50
ears [1–3]. It is well known that paclitaxel (TaxolTM, Bristol–Myers
quibb Co.; Fig. 1) and docetaxel (TaxotereTM, Sanofi–Aventis Co.;
ig. 1) are widely used for the treatment of many types of cancers
1]. Until now natural taxanes and their synthetic analogues are
till the largest reservoir for compounds with better anti-cancer
r anti-multidrug resistance activities [4,5]. Some natural taxanes
uch as 10-deacetylbaccatin III, 10-deacetyl-7-xylosylpaclitaxel
nd cephalomannine are valuable starting materials for production
f paclitaxel and docetaxel to solve the supply crisis [6–9]. Thus,
he isolation and identification of taxanes are quite important for

omprehensive utilization of yew resources.

Up to now, liquid chromatography and its hyphened techniques
ere widely used for analysis of taxanes from botanical or biolog-

cal samples [10,11], but some practical difficulties existed due to

∗ Corresponding authors. Tel.: +86 411 84379317; fax: +86 411 84676961.
∗∗ Corresponding authors. Tel.: +86 411 84379593; fax: +86 411 84675584.

E-mail addresses: ghli@dicp.ac.cn (G.-H. Li), yling@dicp.ac.cn (L. Yang).

021-9673/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2009.08.079
botanical or biological samples.
© 2009 Elsevier B.V. All rights reserved.

the complexity of practical samples. As for the isolation, the con-
ventional HPLC usually suffered from long analysis time, low or
medium resolution, and vast solvent consumption, as a result of
the distinctions of polarity between taxanes deriving from struc-
ture diversity [12,13]. Concerning the identification, information
from mass profiles may be insufficient owing to the existence of
epimers and isomeric metabolites which have the same or similar
mass spectra [4,14,15]. To some extent, the differences in retention
times become an important factor for assignment of target taxanes
in practice. Thus, obtaining retention times of target compounds
by using analysis method with higher speed and better resolution
was needed for analysis of taxanes. Recently, ultra performance liq-
uid chromatography (UPLC) and ultra fast liquid chromatography
(UFLC) have gained popularity due to their short analytical time
and enhanced separation performance [16,17]. The UFLC system
uses columns packed with fine particles (2.2 �m), and is operated
at normal backpressure [18]. High separation speed and superior
resolution make it suitable for the isolation and identification of

taxanes from complex samples.

According to general chromatographic theory, the differences
in retention behaviors of analytes are due to their different inter-
actions with chromatography system, including the interactions
with solid phase, components of mobile phase and so on. Therefore,

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:ghli@dicp.ac.cn
mailto:yling@dicp.ac.cn
dx.doi.org/10.1016/j.chroma.2009.08.079
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Fig. 1. Molecular structures of paclitaxel and docetaxel.

nding out the primary interactions involved in and quantify-
ng the interacting mode are quite important to understand the
etention mechanism and predict retention times for new com-
ounds. Quantitative structure-retention relationship (QSRR) is a
echnique correlating the variations in chromatography retention
ehaviors to the variations of compound structures encoded in sev-
ral descriptors [19,20]. Thus, QSRR model is not only able to predict
he retention times of new compounds just from their structures;
ut also useful to elucidate the retention mechanisms according
o the selected descriptors [21–23]. The combination of QSRR with
FLC will definitely improve the efficiency of isolation and iden-

ification of taxanes. With this investigation, we intended to build
QSRR model which could predict the retention times of taxanes
nder the given condition in UFLC.

In this article, first, we chose seven pairs of epimers and one pair
f isomeric metabolites into the data set. The characteristic of each
air of isomers is that small structural difference corresponds to a

arge gap for the retention times. For example, despite of the only
ifference in hydroxyl orientation at C-7 site, the 7�-stereoisomers
lways have longer retention times than their corresponding 7�-
axanes [24]. The same situation exists for the taxanes metabolites
ydroxylated at parent ring and side chain [25]. These isomers were

ncluded to help find out structural information closely related
o retention behaviors in UFLC, and confirming the interactions
ivotal for chromatography separation process. Second, upon the
ptimized geometry of selected compounds, a large number of
escriptors were calculated to characterize the structure differ-
nces of taxanes. Then a new variable selection method named
onte Carlo variable selection (MCVS) was adopted to select suit-

ble descriptors subsets [26]. With the selected descriptors, linear
nd nonlinear models were built to mimic the interacting mode of
FLC system. The chosen descriptors were analyzed to explain the
ifferences in retention behaviors of isomers. The retention mech-
nism was also discussed according to the selected descriptors.

. Experimental

.1. Solvents and chemicals

Twenty nine taxanes were used in this research (structures
hown in supporting information). Taxanes authentic standards
purity >98%), including 10-deacetylbaccatin III (10-DAB), baccatin
II (B), docetaxel (D) and paclitaxel (P), 3′-para-hydroxyl paclitaxel

C3′-p-OH-P) were purchased from Sigma–Aldrich Co. 6-hydroxyl
aclitaxel (C6-OH-P) was from BD Gentest Corp. Some other taxoid
tandards (purity >95%), including 7-epi-10-deacetylbaccatin III
epi-DAB), 9-dihydro-13-acetylbaccatin III (9-DHB), 10-deacetyl-
-xylosylpaclitaxel (10-DAXP), 10-deacetylcephalomannine
A 1216 (2009) 7055–7062

(10-DAC), 10-deacetylpaclitaxel (10-DAP), cephalomannine
(C), 7-epi-10-deacetylcephalomannine (epi-DAC), 7-epi-10-
deacetylpaclitaxel (epi-DAP), taxol C (T,c), 7-epi-baccatin III
(epi-B), 7-epi-paclitaxel (epi-P) were purchased from Shanghai
Jinhe Bio-technology Co. Ltd. Taxanes including 7-epi-docetaxel
(epi-D), 7-epi-cephalomannine (epi-C), 2′-acetyl-paclitaxel (2′-
AC-P), 10-deacetyl-10-propionylpaclitaxel (10-DAPP) were
synthesized as reported [27]. 10-deacetyl-7-xylosyltaxol C (10-
DAXT,c) and 10-deacetyl-7-xylosylcephalomannine (10-DAXC)
were purified and characterized in house from needle extract
of T. Mairei. 10-deacetyl-7-xylosyl baccatin III (10-DAXB), 4,
10-dideacetylbaccatin III (4,10-DDAB), 4,10-dideacetyl-7-xylosyl
baccatin III (4,10- DDAXB), 13-Oxo-10-deacetylbaccatin III
(13-Oxo-DAB), 13-Oxo-10-deacetyl-7-xylosylbaccatin III (13-Oxo-
DAXB) were synthesized according to published schemes [28,29].
4′′-hydroxylcephalomannine (C4′′-OH-C) was prepared as reported
previously [30]. Millipore water (Millipore Corp., Bedford, MA,
USA) and LC grade methanol and acetonitrile (Tedia Co. Inc., USA)
were used throughout; other reagents were analytical grade. Stock
solutions (1.0 mg ml−1) were prepared by dissolving accurately
weighed 1 mg of each taxane in 1 ml of HPLC-grade methanol and
stored at 4 ◦C. These were used to prepare the standard working
samples by appropriate dilution.

2.2. Instrument and analytical conditions

A Shimadzu Prominence UFLCTM system, equipped with a CBM-
20A communications bus module, an SIL-20ACHT autosampler, two
LC-20AD pumps, a diode array detector (DAD), a DGU-20A3 vacuum
degasser, and a CTO-20A column oven was used for analysis of tax-
anes. A Shim-pack XR-ODS (50.0 mm × 2.0 mm I.D., particle size:
2.2 �m, Shimadzu) analytical column was used. The taxanes stock
solutions was diluted to 100 �g ml−1 and used for working samples.
The mobile phase consisted of water (A) and CH3CN (B), and the gra-
dient elution was carried out with the following profile: 0–17 min,
25%–60% B; 17–20 min, 90% B; 20–25 min, balanced to 25% B. The
flow rate was 0.2 ml min−1 and the column temperature was kept
at 40 ◦C, the injection volume was 1 �l. The scan wavelength was
set from 190 to 370 nm and the detection wavelength was set at
230 nm. Data were processed with LCsolution software (Shimadzu,
Japan) and the retention times were collected for further analysis.

3. Computation method

3.1. Data set

The name and relative retention times (normalized) of taxanes
were listed in Table 1 (Chromatography in supporting information).
The whole data set was grouped into two subsets based on the
k-means clustering method [31]. About 80% of the data set was
classified into the training set to select descriptors subset and build
models; the remaining 20% was used as prediction set in multi-
linear regression. This 20% data set was separated into validation
and test set for artificial neural network modeling.

3.2. Molecular descriptors

The molecular descriptors were calculated based on the
geometry optimized with Hyperchem 6.03 Professional software
(Hypercube, Gainesville, Florida). The optimization procedures
were as follows: the starting conformations were obtained from

the similar geometry of the crystal structure of paclitaxel [32].
Then the semi-empirical PM3 optimization was done using the
Polak-Ribie‘re conjugate gradient algorithm with an RMS gradi-
ent of 0.001 kcal mol−1 Å−1 as convergence criterion [33]. Based on
this optimized conformation, 1666 different molecular descriptors
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Table 1
Experimental and predicted retention times (normalized) of taxanes.

No. Compounds NRTa MLRb ANNc

Training setd

1 2′-AC-P 0.99905 0.9726 1.0294
2 epi-D 0.96702 0.886 0.8835
3 epi-C 0.96336 0.9039 0.9098
4 T, c 0.95725 0.9357 0.9227
5 10-DAPP 0.94395 0.9574 0.9547
6 P 0.85168 0.7744 0.8531
7 epi-DAP 0.84408 0.9103 0.8940
8 D 0.82155 0.8323 0.8440
9 epi-DAC 0.79875 0.8318 0.8227
10 10-DAXT, c 0.71129 0.695 0.6774
11 10-DAP 0.69657 0.7414 0.6878
12 C3′-p-OH-P 0.64106 0.6977 0.6627
13 10-DAXP 0.62587 0.6664 0.6648
14 10-DAXC 0.57932 0.6239 0.6227
15 epi-B 0.56636 0.4821 0.5466
16 C4′′-OH-C 0.53678 0.6024 0.5602
17 9-DHB 0.48093 0.473 0.4490
18 B 0.36464 0.3795 0.3536
19 13-Oxo-DAB 0.2919 0.3165 0.2976
20 13-Oxo-DAXB 0.22914 0.1926 0.2280
21 10DAB 0.14581 0.1681 0.1424
22 4,10-DDAB 0.02273 0.015 0.0232
23 4,10-DDAXB 0 −0.0187 0.0022

Prediction sete

24 epi-Pf 1 0.8312 0.9497
25 Cg 0.81022 0.7847 0.8100
26 C6-OH-Pg 0.72676 0.795 0.7685
27 10-DACf 0.64785 0.8079 0.7594
28 epi-DABg 0.33342 0.2753 0.3393
29 10-DAXBf 0.11304 0.1167 0.1100

a Normalized retention times by NRT = (RT − RTmin)/(RTmax − RTmin).
b

NRT predicted by MLR model.
c

NRT predicted by ANN model.
d
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Molecules “1–23”were used as “Training set” in both MLR and ANN models.
e Molecules “24–29” were used as “Prediction set” in MLR model.
f Molecules used as “validation set” in ANN model.
g Molecules used as “test set” in ANN model.

ere generated from E-DRAGON web server [34–36]. Additional 16
olecular descriptors were calculated using Hyperchem software

s shown in Table 2 (Values of these descriptors listed in supporting
nformation).

.3. Monte Carlo variable selection (MCVS)

MCVS is based on Monte Carlo cross validation which performs
he leave-group (nv)-out cross validation over a large number of
imes (100 ≤ N ≤ 100000) [26,37]. It is especially useful when the
umber of descriptors is much greater than that of compounds.
he average root-mean-squared error of prediction (RMSEP) of
times cross validation is then used to evaluate the predictive
bility of models. Two kinds of heuristic search algorithms (sim-
lated annealing and genetic algorithm) can be applied to select
uitable combination of descriptors subset. The probability of cho-

able 2
escriptors computed by Hyperchem.

Et: total energy; Hf: heat of formation;
�: dipole moment; V: molecular volume; R: Refractivity
HOMO: energy of the highest occupied molecular orbital
LUMO: energy of the lowest unoccupied molecular orbital
MP: Mean Polarizability
PXY , PXZ , PXX , PYZ , PYY , PZZ: polarizability components which measure
the induced dipole moment in the i direction by a field in the j direction
SAP: solvent accessible surface area calculated by a faster more approximate

method
SAG: solvent accessible surface area calculated using a grid method
A 1216 (2009) 7055–7062 7057

sen subset to achieve lowest average RMSEP was approximately
calculated and utilized as the criteria for selection subset. The
advantage of MCVS is that it allows a clear and simple statisti-
cal interpretation of the results, and it is equally compatible with
the MLR-based or non-MLR-based quantitative structure-activity
relationship (QSAR) models. The detailed description of the MCVS
method can be found elsewhere [26]. In this article, the QSAR-
BENCH v2 program was used for our study [38].

Before the feature selection, some pretreatments were per-
formed for the training set. The E-DRAGON error codes were
replaced with zero, the constant and duplicate columns were
deleted. With these operations, about 1300 descriptors were left
for further analysis. Then the compounds (in rows) were sorted by
their retention values, and the descriptors (in columns) were sorted
by their correlation to the retention values column. After sorting,
the retention values and descriptor columns were normalized to
the [0,1] range.

Subsequently, Monte Carlo variable selection (MCVS) was per-
formed to select suitable descriptor subsets using genetic algorithm
which can avoid getting trapped in local minima [26]. The number
of iterations for leave-group (nv)-out Monte Carlo cross validation
was 100,000. The size of validation set nv was assigned to be half of
the training set, i.e. 12 [39]. The number of descriptors k was exam-
ined from 1 to 10. From parsimonious consideration, the following
variable selection schedule was proposed: k = 1 was considered at
first, then it was consecutively increased until an “acceptable” P-
value (normally P ≤ 0.05) associated with current k was obtained. If
subset with an acceptable P did not exist, the data set was trimmed
to eliminate the descriptors cluster, and then the MCVS repeated.
The simplest trimming method was adopted: first, the descriptors
were sorted in descending order based on their correlation |rjj′ |
to retention value column, then starting from the second descrip-
tor, a descriptor will be removed if it is correlated more strongly
than some chosen threshold (rmax) to the remaining descriptors,
i.e. |rjj′ | > rmax. To find the most suitable subsets, rmax was examined
from 0.9 to 0.5.

3.4. Model building

The retention behavior of compounds is complex, which
involves in several kinds of inter and intra molecular interactions.
Therefore, besides the MLR, nonlinear ANN was adopted to explore
the relationship between those descriptors and retention times.

3.4.1. Artificial neural network (ANN)
ANN has been widely used in QSRR modeling field, its princi-

ples, functioning and applications have been adequately described
elsewhere [40,41]. In this article, some fully connected three-layer
error back propagation neural networks with sigmoid trans-
fer function were constructed. The number of neurons in input
layer was set to be the number of descriptors chosen by MCVS.
Levenberg–Marquardt algorithm was adopted to optimize weights
and biases because it was significantly faster than other algorithms
based on gradient descent [42]. For ANN modeling, the dataset was
separated into three groups: training, validation, and test sets. It
is noteworthy that the training data set was the same as that of
MLR model, and the molecules in validation and test sets were just
identical with those selected as prediction set in MLR model. Three
compounds in prediction set were randomly selected as validation

set to take care of the overfitting problems [40,43]. The test set,
consisting of the remaining three molecules, was used to evalu-
ate the generated models. The early-stopping method was adopted
to avoid overtraining and overfitting. An internally developed C
language program was used for modeling.
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Table 3
Results of Monte Carlo variable selection and statistical results of Monte Carlo cross validationa.

Model Descriptorsb subset Fc RMSE P value R2
cv

d R2e

1 ALOGPS log P 218.909 0.1025 0.1916 0.873 0.913
2 ALOGP 153.400 0.1222 0.9205 0.823 0.907
3 ALOGPS log P (|rij′ | > 0.9)f 218.909 0.1024 0.0344 0.873 0.913
5 [ALOGPS log P] HATS0m 189.832 0.082 0.7181 0.917 0.950
6 ALOGPS log P HATS0m RDF070m 218.144 0.0699 0.697 0.940 0.972
7 ALOGPS log P HATS0m PXY (|rij′ | > 0.9) 172.464 0.0744 0.4974 0.932 0.965
8 ALOGPS log P HATS0m X1A PXY 240.203 0.0622 0.7514 0.950 0.982
9 [ALOGPS log P HATS0m PXY] R6e+ (|rij′ | > 0.9) 199.144 0.069 0.7477 0.942 0.978
10 [ALOGPS log P] BEHp7 X1AHATS0m PXY 350.818 0.052 0.7686 0.967 0.988
11 [ALOGPS log P] PJI2 PJI3 DISPm G3u Ds (|rij′ | > 0.9) 583.316 0.0443 0.5804 0.98 0.995
12 [ALOGPS log P] RDF125v R1u R7u+ MATS5v G3e R7e 658.704 0.0425 0.969 0.997 0.997
13 [ALOGPS log P] R3e+ZZMor01m Gm L1p PXY Mor09e 909.393 0.0483 0.7802 0.97 0.998
14 [ALOGPS log P] RDF065u ESpm13r E1p G3u Mor27m Mor28v Mor29m Mor27u 2100.658 0.0446 0.7808 0.94 0.999

a In this table, brackets denote preselected or fixed descriptors.
b The explanation of descriptors except PXY was in Ref. [36].
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using descriptor subsets: “ALOGPS log P”, “ALOGPS log P +
HATS0m”, “ALOGPS log P + HATS0m + PXY” and “ALOGPS log P +
HATS0m + PXY + R6e+”. The built models were used to predict the
external prediction set (results shown in supporting information).
The statistical characteristics of MLR model using four descriptors

Table 4
The correlation matrix of the selected four descriptors.

ALOGPS log P HATS0m PXY X1A

ALOGPS log P 1.0000
HATS0m −0.7035 1.0000
PXY 0.3494 −0.2177 1.0000
X1A 0.8548 −0.8668 0.2526 1.0000

Table 5
The correlation matrix of the selected descriptors after trimming data set.
c F statistic was calculated on the training data set.
d R2 of Monte Carlo cross validation (N = 100000).
e R2 of the MLR models built using the selected descriptors subsets.
f The data set was trimmed by |rij′ | ≤ 0.9.

.5. Model validation

The following parameters were calculated to evaluate the
erformance of models: Q 2

cv (cross-validation square correlation
oefficient), RMSEP (root-mean-square error of prediction), R2

square correlation coefficient for regression line of the experi-
ental vs. predicted activity), R2

0 (square correlation coefficients
or regression line through the origin), and K (the slope of regres-
ion line through the origin). The residuals between predicted and
xperimentally derived activities were also calculated. The propo-
itional criteria necessary for high predictive ability of a model
ere high Q 2

cv (at least > 0.5), high R2 for external test set (at
east > 0.6), (R2 − R2

0)/R2 < 0.1, and 0.85 ≤ K ≤ 1.15 [44,45]. More-
ver, the leave-12-out cross validation was randomly performed
00 times to evaluate the robustness of ANN model.

. Results

.1. Principal component analysis (PCA)

The PCA has been performed to explore the correlation among
682 molecular descriptors and evaluate data splitting method. The
rst two PCs can explain 73.02% of the total data variation (65.91
nd 7.11 respectively), which suggested a high correlation among
hese molecular descriptors. Eight PCs were needed to explain
0% of data variance (Fig. 2a). Fig. 2b described the loading plot
f the first two PCs, which also showed high correlation of those
escriptors. Thus, feature selection was quite necessary before
SRR modeling. The scores plot of first three PCs was depicted

o show the space locations of 29 taxanes (Fig. 2c). It can be seen
hat all the samples in the training and prediction sets were well
cattered over the whole space, which demonstrated that the data
plitting method was reliable for evaluation of predictive ability of
SRR models.

.2. Monte Carlo variable selection

The MCVS was operated a lot of times to look for subsets
ith acceptable P-value (≤0.05) and smallest RMSEP. For k = 1,

escriptors ALOGPS log P and ALOGP were chosen as the best
escriptors, and ALOGPS log P was much better according to the
tatistical results. After trimming the data set by |rij′ | > 0.9, descrip-
or “ALOGPS log P” obtained acceptable P-value 0.0344 (Table 3).
his result proved that descriptor “ALOGPS log P” was the best sin-
gle descriptor. For k = 2–10, even trimming the data set by |rij′ | > 0.5,
subset with P-value ≤0.05 was still not to be found. So for each
“k”, we recorded the subsets with the smallest P-value and/or the
smallest RMSEP. The MCVS results were listed in Table 3, statis-
tical results of Monte Carlo cross validation were also recorded.
Without P-value criterion, we adopted the following method to
determine optimum number of descriptors [46]: if the inclusion of
new descriptor could not improve the statistic result of the model,
it was deemed that the optimum number of descriptor subset has
been achieved. The increase of “R2′′

less than 0.01 was chosen as
the breakpoint criterion. Based on Table 3, it can be concluded that
four descriptors were already enough for modeling. The correla-
tion matrix of these descriptors was shown in Table 4. From this
table, it could be clearly seen that descriptor “X1A” had a moder-
ate correlation with another two descriptors. So we fixed the other
three descriptors, and performed MCVS again. Descriptor “R6e+”
was selected as the best addition (trimmed by |rij′ | > 0.9). Table 5
showed the correlation matrix of these new descriptors and no
significant correlation was observed.

4.3. MLR models

For comparison purpose, the MLR models were built
ALOGPS log P HATS0m PXY R6e+

ALOGPS log P 1.0000
HATS0m −0.7035 1.0000
PXY 0.3494 −0.2177 1.0000
R6e+ −0.7066 0.7946 −0.1434 1.0000
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Table 6
The molecular descriptors and statistical characteristics of the MLR model.

Descriptors Chemical meaning Coefficient Sig.

Constant Intercept 0.133 ± 0.06
ALOGPS log P Computed logarithm of

octanol-water partition coefficient
1.009 ± 0.06 0.038

HATS0m GATAWAY descriptor
(leverage-weighted
Autocorrelation of lag 0 / weighted
by atomic masses)

−0.444 ± 0.07 0.000

PXY Mean polarizability component −0.154 ± 0.04 0.004
R6e+ GATAWAY (R maximal 0.219 ± 0.07 0.000

for hidden layer, learning rate, and momentum were optimized
using the validation set. The ability to generalize the model was
evaluated by an external test set. The predicted retention times
values (normalized) for all the data set were listed in Table 1. The
scatter plot of experimental retention times vs. predicted ones was

Fig. 3. Plot of experimental vs. predicted retention times (normalized) by MLR.
ig. 2. (a) Cumulative percent of explained data variance by consecutive PCs; (b)
C1–PC2 loading plot; (c) PC1–PC2–PC3 scores plot.

ere listed in Table 6 and the predicted values for all the taxanes
ere given in Table 1. According to the criteria for a good model
entioned above, the MLR model using four descriptor chosen

y MCVS method had satisfactory predictive ability. The plot of
xperimental vs. predicted retention times (normalized) by MLR
sing four descriptors were shown in Fig. 3. The identification
f isomers can be chosen as a judgment about if a QSRR model
an reproduce the “translation” function between structures and
etention times realized by the chromatography system. The
redicted results for all pairs of isomers were depicted as shown

n Fig. 4.
.4. ANN model

In order to explore the nonlinear relationship between retention
imes and the selected descriptors, ANN technique was adopted to
autocorrelation of lag 6 /Weighted
by atomic Sanderson
electronegativities)

build models. A 4-3-1 back propagation artificial neural network
model was developed. The parameters such as the number of nodes
Fig. 4. Histogram of the predicted retention times for all pairs of isomers by MLR
using descriptors ALOGPS log P + HATS0m + PXY + R6e+.
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ig. 5. Plot of experimental vs. predicted retention times (normalized) by ANN.

hown in Fig. 5. It was evident that the predicted values agreed
ell with experimental values. The statistical results of ANN model
ere listed in Table 7, and all the results were in accord with the

riteria for a good predictive model. In order to compare the MLR
odel with ANN, the validation and test set in ANN were evaluated

ogether. The better results of ANN than MLR model as shown in
able 7 demonstrated the complexity of chromatography retention

rocess.

Fig. 6 showed a plot of the residuals vs. experimental reten-
ion times for ANN model. The residuals were equally distributed
n both sides of zero line which indicates that no symmetric
rror exists in the development of our ANN model. 10-DAC was

able 7
tatistical results of the MLR and ANN models.

Model Data set Q 2
LOO RMSE R2 R2

0 (R2 − R2
0)/R2 K

MLR Training 0.9641 0.0450 0.9779 0.9779 0 1
Prediction 0.1023 0.8832 0.8817 0.0017 0.9971

ANN Training 0.9748 0.0315 0.9892 0.9892 0 1.0005
Validation 0.0645 0.9747 0.9746 0.0001 0.9324
Test 0.0379 0.9840 0.9813 0.0003 1.0086
Predictiona 0.0529 0.972 0.9717 0.0003 0.9753

a To compare with MLR results, the validation and test set of ANN model were
lso analyzed together.

Fig. 6. Plot of residuals vs. experimental retention times for the ANN model.
Fig. 7. Histogram of the predicted retention times for all pairs of isomers by ANN
using descriptors ALOGPS log P + HATS0m + PXY + R6e+.

found with the largest predicted error. The reason may be that
few cephalomannine derivatives were included in training set due
to lack of commercial available standards. The predicted retention
times for all pairs of isomers of ANN model were visualized in Fig. 7.
It can be seen that all of the isomers have been successfully discrim-
inated using this nonlinear model, which testified the effectiveness
of this model again.

4.5. Leave-12-out cross validation

In order to examine the stability of this ANN model, leave-12-
out cross validation was performed for 100 times, which produced
100 models, by randomly deleting 12 objects from the training set
each time as test set. Calculation of R2 and RMSEP was done using
the results from these 100 models. The statistical results were con-
sidered as a benchmark of predictive ability of the model. The cross
validation R2 was 0.942, and RMSEP was 0.0736, which proved the
robustness of our ANN model.

5. Discussion

Besides prediction of retention times, our QSRR model was also
adopted to probe the retention mechanism according to these
selected descriptors. In the MCVS results, “ALOGPS log P” was
the best single descriptor with statistical meaning. It is the log-
arithm of octanol–water partition coefficient calculated by free
software ALOGPS2.1. It is well known that log P is considered
as the measure of lipophilic ability of molecules. The choice of
it as best descriptor showed that interaction between analytes
and hydrocarbon chain, i.e. hydrophobic interaction was the most
important factor determining the retention times of taxanes in
reversed phase UFLC system. The largest positive coefficient of
this descriptor in MLR model shows that increase of molecules’
lipophilic property will prolong their retention times. As for the
isomeric metabolites, owing to the different hydroxyl sites, they
were easy to be differentiated by using this descriptor only. How-
ever, this descriptor was of no use in the differentiation of epimers
(supporting information). This is because “ALOGPS log P” was cal-

culated based on the electrical-topological state descriptors which
did not take the three dimensional (3-D) geometrical information
into consideration [47]. Therefore, the taxanes and correspond-
ing epi-taxanes always hold the same values for this descriptor.
Additional descriptors were needed for correct description of the
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inor differences between pairs of epimers. According to former
esearches [27,48,49], there existed an intramolecular hydrogen
ond between the C-7 �-hydroxyl and C-4 carbonyl of epi-taxanes,
hich made a big difference between the 3-D conformation of

axanes and their corresponding epimers. Thus, descriptors cor-
elated with 3-D conformation will be helpful. Fortunately, the
ext selected descriptor HATA0m was an H-GETAWAY (GEome-
ry, Topology and Atom-Weights AssemblY) descriptor [50]. It was
ased on a leverage matrix, which was called “Molecular Influence
atrix”, and was a new molecular representation calculated from

he spatial coordinates of atoms in a chosen conformation. As deriv-
ng from the geometry of molecule, this descriptor was sensitive
o the conformational change and bond lengths that account for
tom types and bond multiplicity [51]. This character was exactly
hat we need to differentiate epimers. Inclusion of this descrip-

or has improved the predictive ability of MLR model as shown
n Table 3. The RMSECV decreased from 0.1024 to 0.082, and the
2 have increased from 0.913 to 0.950. And some of the epimers
hich have no side chains were correctly differentiated although it
as not good enough (supporting information). Compounds with

ide chain may be involved in some other interactions. The next
ncluded descriptor was polarizability which is the induced dipole

oment of a molecule by per unit of applied electric field. Polariz-
bility was a tensor with components Pij. Descriptor PXY represents
he induced dipole moment in the X direction by an electric field
n the Y direction. Analytes’ polarizability was mostly related with
ipole-induced dipole interaction. The negative coefficient of PXY

eans that increase of this descriptor value will favor the elu-
ion process. It is reasonable because the dipole-induced dipole
ttractions between an analyte and polar molecules of the eluents
re obviously stronger than that between the same analyte and
onpolar ligands (mainly hydrocarbons) of stationary phase. The
ddition of this descriptor has improved the predictive ability of
SRR model remarkably as shown in Table 3, all the isomers have
een differentiated (supporting information). This result testifies
hat the interaction of analytes with eluents is quite important for
eparation process in UFLC system. The last but not least important
escriptor included was R6e+. It is an R-GETAWAY descriptor which
ombines the information provided by molecular influence matrix
ith geometric interatomic distances in the molecule. The remark-

ble character of R6e+ is that it is weighted by atomic Sanderson
lectronegativities. So it is a polarity descriptor which depicts the
lectronegativity distribution of a molecule in 3-D space. The pos-
tive coefficient of this descriptor indicates the possible presence
f free silanols on the surface of the silica-based material, and
he polar interaction between analytes and free silanols always
ncreases the retention of taxanes in UFLC. The MLR model using
our descriptors did not improve the differentiation results signif-
cantly as exhibited in Table 3. However, when the nonlinear ANN

odel was built, the ability of differentiation between epimers was
mproved and the accuracy of predicted retention times has been
nhanced (Figs. 4 and 7). This reminds us that the retention pro-
ess on UFLC was complicated and not simple summation of several
nteractions.

Based on above discussion, we can conclude that hydropho-
ic interaction between analytes and the hydrocarbon chain was
he driving force for retention in UFLC. The isomeric metabolites
ere easy to be distinguished just by the log P descriptor. How-

ver, due to lack of 3-D conformational information, the computed
og P could not embody the difference between epimers and their
orresponding taxanes. This result reminded us that a new 3-D

og P computation method was necessary. The discrimination of
pimers was owing to the inclusion of descriptor related with
eometry conformation. The dipole-induced dipole interactions
etween analytes and the mobile phase were usually in favor of
lution process. Moreover, the polar interaction between analytes

[

[
[

[
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and free silanols was another important factor for retention of ana-
lytes. It can be seen that all the selected descriptors have physical
and chemical meanings, and these descriptors can account for lead-
ing structural features responsible for the retention behavior of
taxanes. The main interactions determining the retention of ana-
lytes in UFLC can be described by these descriptors. The robustness
of our QSRR model and the exploration of retention mechanism
demonstrated that this QSRR model can be used as an approximate
surrogate of the UFLC system.

6. Conclusion

In the present study, pairs of isomers with similar structures but
different retention behaviors were included to build QSRR models.
Four descriptors were chosen as the best subset from a large pool
of descriptors by using MCVS method. With these four descriptors,
MLR and ANN have been used to build QSRR models for predic-
tion retention times of taxanes in UFLC. Both models have shown
good predictive ability, ANN model was found to be better. All the
isomers can be differentiated by ANN model, and molecules’ 3-D
conformational information was critical for the differentiation of
epimers. As for the retention mechanism, hydrophobic interaction
of analytes with hydrocarbon chain was found to be the driving
force for the retention in UFLC. Analytes’ dipole-induced dipole
interaction with eluents, polar interactions with free silanols were
also considered as important factors influencing chromatography
retention behaviors. In conclusion, MCVS method is effective for
variable selection, and combining with ANN, a good QSRR model
can be built. This model has grasped the primary essence for
retention in UFLC. It will be useful for isolation and purification
of taxanes, and also helpful for the identification of epimers and
metabolites from complex biological samples combining with mass
spectra.
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